Лазерные диоды

Лазерные диоды являются также полупроводниковыми источниками. Понятие лазер происходит от аббревиатуры английского названия оптического квантового генератора (Light Amplification by Stimulating Emission and Radiation). Основным элементом структуры лазера является оптический резонатор, представляющий собой объемную полость из оптического материала. Лазерный диод (или просто лазер) может функционировать как обычный LED-диод, пока возбуждающий входной ток не достигнет порогового значения. В этой точке процесс рекомбинации излучаемых фотонов (который происходит в обычном LED) начинает стимулировать дополнительную эмиссию фотонов внутри оптического резонатора. Этот процесс называется оптической генерацией. Типичная структура лазера показана на рис. 11.2.
С увеличением температуры прибора пороговое значение тока растет и выходная оптическая мощность изменяется. Длина волны выходного оптического излучения зависит от температуры и в связи с этим лазерам, в отличие от LED-диодов, требуется температурная компенсация, поэтому устройство лазеров значительно более сложно, чем устройство LED-диодов. Одним из используемых методов температурной компенсации является термоэлектрическое охлаждение с обратной связью (ТЕС). Когда электрический ток проходит через материал лазера, одна его сторона нагревается сильнее. Чувствительным элементом лазера является термистор, реагирующий на изменение температуры изменением сопротивления. С его помощью ток возбуждения лазера автоматически регулируется и стабилизируется. Схема передатчика на основе лазерного диода с термоэлектрическим контролем показана на рис. 11.3.
В дополнение к температурной стабилизации большинство лазеров включают контроль смещения, обеспечивающий стабилизацию самого порогового тока, который в противном случае мог бы также измениться под воздействием температуры. Схема передатчика с устройством контроля смещения порога показана на рис. 11.4.
Очевидно, функции стабилизации увеличивают сложность, а следовательно, и стоимость лазерных диодов по сравнению с обычными LED-диодами. Важным свойством лазерных излучателей является линейность выходной характеристики, что особенно важно при трансляции аналоговых сигналов.
Именно поэтому индекс модуляции, как в прямом, так и в обратном (если он есть) канале оптической системы, невелик (не превышает 10%). Лазерные источники света имеют следующие характеристики.
• Выходная мощность зависит от температуры и требует сложной температурной компенсации, которая встраивается в прибор.
• Длина волны излучения зависит от температуры.
• Пороговый ток необходимо контролировать путем наблюдения за мощностью выходного излучения.

Кабельное телевидение

© 2009-2010